Über UnsUnser ServicePublikationenProbenabnahme & VersandWebcastsHäufige FragenUnser Selbsttest

Literaturverzeichnis

Literatur zum HS-Omega-3 Index

178. Bigornia SJ, Harris WS, Falcón LM, Ordovás JM, Lai CQ, Tucker KL. The Omega-3 Index Is Inversely Associated with Depressive Symptoms among Individuals with Elevated Oxidative Stress Biomarkers. J Nutr. 2016, e-pub Mar 2. pii: jn222562
177. Carney RM, Steinmeyer BC, Freedland KE, Rubin EH, Rich MW, Harris WS. Baseline blood levels of omega-3 and depression remission: a secondary analysis of data from a placebo-controlled trial of omega-3 supplements. J Clin Psychiatry. 2016;77:e138-43
176. Harris WS, Luo J, Pottala JV, Margolis KL, Espeland MA, Robinson JG. Red Blood Cell Fatty Acids and Incident Diabetes Mellitus in the Women's Health Initiative Memory Study. PLoS One. 2016 Feb 16;11(2):e0147894.
175. Bigornia SJ, Lichtenstein AH, Harris WS, Tucker KL. Associations of erythrocyte fatty acid patterns with insulin resistance. Am J Clin Nutr. 2016, e-pub Feb 10.
174. Rice HB, Bernasconi A, Maki KC, Harris WS, von Schacky C, Calder PC. Conducting omega-3 clinical trials with cardiovascular outcomes: Proceedings of a workshop held at ISSFAL 2014. Prostaglandins Leukot Essent Fatty Acids. 2016, e-pub Jan 25
173. van der Wurff ISM, von Schacky C, Berge K, Zeegers MP, Kirschner PA, de Groot RHM. Positive association between blood Omega-3 index and cognition in healthy Dutch adolescents. Nutrients. 2016;8:13
172. DeFina LF, Bassett MH, Finley CE, Barlow CE, Willis BL, Cooper T, Clark SM, Harris WS, Radford NB. Association between omega-3 fatty acids and serum prostate-specific antigen. Nutr Cancer. 2015 Dec 28:1-5. [Epub ahead of print]
171. von Schacky C. Omega-3 Fettsäuren im Sport. Vitalstoffe 2015;5/4:10-16
170. Langlois K, Ratnayake WMN. Omega-3 Index of Canadian Adults. Statistics Canada, Catalogue No. 82-003-X. Health Reports 2015;26:3-11
169. Köbe T, Witte AV, Schnelle A, Lesemann A, Fabian S, Tesky VA, Pantel J, Flöel A. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment. Neuroimage. E-pub 2015 Oct 1.
168. Reese I, Werfel T. Schützen langkettige omega-3 Fettsäuren vor atopischer Dermatitis? J Dtsch Dermatol Ges 2015;13:879-85
167. Kleber ME, Delgado DE, Lorkowski S, März W, von Schacky C. Trans Fatty Acids and Mortality in Patients referred for Coronary Angiography - The Ludwigshafen Risk and Cardiovascular Health Study. Eur Heart J 2015, e-pub Sep 22
166. Ebbesson SO, Voruganti VS, Higgins PB, Fabsitz RR, Ebbesson LO, Laston S, Harris WS, Kennish J, Umans BD, Wang H, Devereux RB, Okin PM, Weissman NJ, MacCluer JW, Umans JG, Howard BV. Fatty acids linked to cardiovascular mortality are associated with risk factors. Int J Circumpolar Health. E-pub 2015;74:28055.
165. Skulas-Ray AC, Flock MR, Richter CK, Harris WS, West SG, Kris-Etherton PM. Red Blood Cell Docosapentaenoic Acid (DPA n-3) is Inversely Associated with Triglycerides and C-reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation. Nutrients. 2015;7:6390-404
164. Baack ML, Puumala SE, Messier SE, Pritchett DK, Harris WS. What is the relationship between gestational age and docosahexaenoic acid (DHA) and arachidonic acid (ARA) levels? Prostaglandins Leukot Essent Fatty Acids. 2015;100:5-11, e-pub 2015 Jun 17.
163. Park Y, Park YS, Kim SH, Oh DH, Park YC. Supplementation of n-3 Polyunsaturated Fatty Acids for Major Depressive Disorder: A Randomized, Double-Blind, 12-Week, Placebo-Controlled Trial in Korea. Ann Nutr Metab. 2015;66:141-8, e-pub Mar 24
162. de Ferranti SD, Milliren CE, Denhoff ER, Steltz SK, Selamet Tierney ES, Feldman HA, Osganian SK. Using high-dose omega-3 fatty acid supplements to lower triglyceride levels in 10- to 19-year-olds. Clin Pediatr (Phila). 2014;53:428-38.
161. Zaalberg A, Wielders J, Bulten E, van der Staak C, Wouters A, Nijman H. Relationships of diet-related blood parameters and blood lead levels with psychopathology and aggression in forensic psychiatric inpatients. Crim Behav Ment Health. E-pub 2015 Mar 31.
160. Fontes JD, Rahman F, Lacey S, Larson MG, Vasan RS, Benjamin EJ, Harris WS, Robins SJ. Red blood cell fatty acids and biomarkers of inflammation: A cross-sectional study in a community-based cohort. Atherosclerosis. 2015;240:431-436
159. Harris WS. Pushing the limits with omega-3 fatty acids. Trends Cardiovasc Med. E-pub 2015 Mar 16.
158. Schmidt S, Willers J, Riecker S, Möller K, Schuchardt JP, Hahn A. Effect of omega-3 polyunsaturated fatty acids on the cytoskeleton: an open-label intervention study. Lipids Health Dis. 2015 Feb 14;14:4.
157. Naesgaard PA, Pönitz V, Aarsetoey H, Brügger-Andersen T, Grundt H, Harris WS, Staines H, Nilsen DW. Prognostic utility of vitamin d in acute coronary syndrome patients in coastal norway. Dis Markers. 2015;2015:283178.
156. Lee SM, Son YK, Kim SE, An WS. The effects of omega-3 Fatty Acid on vitamin d activation in hemodialysis patients: a pilot study. Mar Drugs. 2015;13:741-55.
155. Kaess BM, Harris WS, Lacey S, Larson MG, Hamburg NM, Vita JA, Robins SJ, Benjamin EJ, Mitchell GF, Vasan RS. The relation of red blood cell fatty acids with vascular stiffness, cardiac structure and left ventricular function: The Framingham Heart Study. Vasc Med. 2015;20:5-13; e-pub 2014 Dec 17.
154. Hedengran A, Szecsi PB, Dyerberg J, Harris WS, Stender S. n-3 PUFA Esterified to Glycerol or as Ethyl Esters Reduce Non-Fasting Plasma Triacylglycerol in Subjects with Hypertriglyceridemia: A Randomized Trial. Lipids 2015;50:165-76, e-pub 2014 Nov 18
153. Naesgaard PA, Pönitz V, Aarsetoey H, Brügger-Andersen T, Grundt H, Harris WS, Staines H, Nilsen DW. Prognostic utility of vitamin d in acute coronary syndrome patients in coastal norway. Dis Markers. 2015;2015:283178.
152. Lee SM, Son YK, Kim SE, An WS. The effects of omega-3 Fatty Acid on vitamin d activation in hemodialysis patients: a pilot study. Mar Drugs. 2015;13:741-55.
151. Kaess BM, Harris WS, Lacey S, Larson MG, Hamburg NM, Vita JA, Robins SJ, Benjamin EJ, Mitchell GF, Vasan RS. The relation of red blood cell fatty acids with vascular stiffness, cardiac structure and left ventricular function: The Framingham Heart Study. Vasc Med. 2014, e-pub Dec 17.
150. Hedengran A, Szecsi PB, Dyerberg J, Harris WS, Stender S. n-3 PUFA Esterified to Glycerol or as Ethyl Esters Reduce Non-Fasting Plasma Triacylglycerol in Subjects with Hypertriglyceridemia: A Randomized Trial. Lipids 2015;50:165-76, e-pub 2014 Nov 18
149. Voggt A, Berger M, Obermeier M, Löw A, Seemüller F, Riedel M, Moeller HJ, Zimmermann R, Kirchberg F, von Schacky C, Severus E. Heart rate variability and omega-3 index in euthymic patients with bipolar disorders. Eur Psy 2015:30:228-32, e-pub 2014 Dec 30
148. von Schacky C. Sinn und Unsinn. Vitamine und Supplemente in der Kardiologie. Akt Kard 2014;3:375-9
147. Flock MR, Skulas-Ray AC, Harris WS, Gaugler TL, Fleming JA, Kris-Etherton PM. Effects of supplemental long-chain omega-3 fatty acids and erythrocyte membrane fatty acid content on circulating inflammatory markers in a randomized controlled trial of healthy adults. Prostaglandins Leukot Essent Fatty Acids 2014;91:161-8, e-pub Jul 17.
146. Schuchardt JP, Neubronner J, Block RC, von Schacky C, Hahn A. Associations between omega-3 index increase and triglyceride decrease in hypertriglyceridemic patients in response to supplementation with long chain omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 2014;91:129-34, e-pub 2014 July 14
145. Widenhorn-Müller K, Schwanda S, Scholz E, Spitzer M, Bode H. Effect of supplementation with long-chain ω-3 polyunsaturated fatty acids on behavior and cognition in children with attention deficit/hyperactivity disorder (ADHD): A randomized placebo-controlled intervention trial. Prostaglandins Leukot Essent Fatty Acids. 2014;91:49-60, e-pub 2014 May 28
144. von Schacky C, Haslbauer R, Kemper M, Halle M. Low Omega-3 Index in 106 German elite winter endurance Athletes – A pilot study. International Journal of Sport Nutrition & Exercise Metabolism 2014;24:559-64, e-pub Sep 8
143. Nosova EV, Chong KC, Alley HF, Harris WS, Boscardin WJ, Conte MS, Owens CD, Grenon SM. Clinical correlates of red blood cell omega-3 fatty acid content in male veterans with peripheral arterial disease. J Vasc Surg. 2014;60:1325-31, e-pub 2014 Jun 19
142. Harris WS. Achieving optimal n–3 fatty acid status: the vegetarian’s challenge . . .or not. Am J Clin Nutr 2014;100(Suppl 1):449S-452S, e-pub 2014 June 4
141. Gurzell EA, Wiesinger JA, Morkam C, Hemmrich S, Harris WS, Fenton JI. Is the omega-3 index a valid marker of intestinal membrane phospholipid EPA+DHA content? Prostaglandins Leukot Essent Fatty Acids. 2014;91:87-96, e-pub 2014 Apr 24.
140. von Schacky C. Omega-3 Fatty Acids in Cardiovascular Disease - an Uphill Battle. PLEFA 2015;92:41-7 e-pub 2014 May 28
139. von Schacky C. Nahrungsergänzung mit Omega-3 Fettsäuren? Herzmedizin 2014:31(3):6-10
138. von Schacky C. Der HS-Omega 3 Index®: klinische Wertigkeit standardisierter Fettsäureanalytik. J Lab Med 2014;38:167-78
137. Pottala JV, Djira GD, Espeland MA, Ye J, Larson MG, Harris WS. Structural equation modeling for analyzing erythrocyte fatty acids in Framingham. Comp Math Meth Med 2014;160520, e-pub 2014 April 15
136. von Schacky C. Hirnstruktur und Hirnfunktion: Rolle der Omega-3 Fettsäuren. Z Orthomol Med 2014;1:20-4
135. Dretsch MN, Johnston D, Bradley RS, Macrae H, Deuster PA, Harris WS. Effects of omega-3 Fatty Acid supplementation on neurocognitive functioning and mood in deployed u.s. Soldiers: a pilot study. Mil Med. 2014;179:396-403
134. Sarter B, Kelsey KS, Schwartz TA, Harris WS. Blood docosahexaenoic acid and eicosapentaenoic acid in vegans: Associations with age and gender and effects of an algal-derived omega-3 fatty acid supplement. Clin Nutr. e-pub 2014 Mar 14.
133. Fischer R, Konkel A, Mehling H, Blossey K, Gapelyuk A, Wessel N, von Schacky C, Dechend R, Muller DN, Rothe M, Luft FC, Weylandt K, Schunck WH. Dietary Omega-3 Fatty Acids Modulate the Eicosanoid Profile in Man Primarily via the CYP-epoxygenase Pathway. J Lipid Res 2014;55:1150-1164, e-pub 2014 Mar 16
132. Harris WS, Pottala JV, Thiselton DL, A Varvel S, Baedke AM, Dayspring TD, Warnick GR, McConnell JP. Does APOE Genotype Modify the Relations Between Serum Lipid and Erythrocyte Omega-3 Fatty Acid Levels? J Cardiovasc Transl Res. 2014;7:526-32, e-pub 2014 Mar 5
131. von Schacky C. Omega-3 Index for Cardiovascular Health. Nutrients 2014;6:799-814
130. Berge K, Musa-Veloso K, Harwood M, Hoem N, Burri L. Krill Oil Supplementation lowers Serum Triglycerides without increasing low-density Lipoprotein Cholesterol in Adults with Borderline high or high Triglycerides. Nutr Res 2014;34:126-33
129. Harris WS, Schmitt TL. Unexpected similarity in RBC DHA and AA levels between bottlenose dolphins and humans. Prostaglandins Leukot Essent Fatty Acids. 2014;90:55-9. e-pub 2013 Dec 19
128. Augustine AH, Lowenstein LM, Harris WS, Shearer GC, Block RC. Treatment with omega-3 fatty acid ethyl-ester alters fatty acid composition of lipoproteins in overweight or obese adults with insulin resistance. Prostaglandins Leukot Essent Fatty Acids. 2014;90:69-75. e-pub 2013 Dec 18
127. Persons JE, Robinson JG, Ammann EM, Coryell WH, Espeland MA, Harris WS, Manson JE, Fiedorowicz JG. Omega-3 fatty acid biomarkers and subsequent depressive symptoms. Int J Geriatr Psychiatry. 2014;29:747-57, e-pub 2013 Dec 11
126. Flock MR, Skulas-Ray AC, Harris WS, Etherton TD, Fleming JA, Kris-Etherton PM. Determinants of Erythrocyte Omega-3 Fatty Acid Content in Response to Fish Oil Supplementation: A Dose-Response Randomized Controlled Trial. J Am Heart Assoc. 2013 Nov 19;2(6):e000513.
125. Pottala JV, Yaffe K, Robinson J, Espeland MA, Wallace R, Harris WS. Higher RBC EPA+DHA corresponds with larger total brain and hippocampal volumes: WHIMS-MRI study. Neurology 2013 (in press)
124. Jo S, An WS, Park Y. Erythrocyte n-3 Polyunsaturated Fatty Acids and the Risk of Type 2 Diabetes in Koreans: A Case-control Study. Ann Nutr Metab 2013 (in press).
123. Harris WS. Assessing Fatty Acid Biostatus: Red Blood Cells or Plasma? Lipid Technol 2013 (in press).
122. Flock MR, Harris WS, Kris-Etherton PM. Long-chain dietary omega-3 fatty acids: Time to establish a dietary reference intake. Nutr Rev 2013;71:692-707
121. Harris WS, Dayspring TD, Moran TJ. Omega-3 Fatty Acids and Cardiovascular Disease. New Developments and Applications. Postgrad Med 2013;125:100-113
120. Baek D, Park Y. Association between erythrocyte n-3 polyunsaturated fatty acids and biomarkers of inflammation and oxidative stress in patients with and without depression. Prostaglandins Leukot Essent Fatty Acids. E-pub 2013 Sep 21
119. Harris WS, Varvel SA, Pottala JV, Warnick GR, McConnell JP. The Comparative Effects Of An Acute Dose Of Fish Oil On Omega-3 Fatty Acid Levels in Red Blood Cells Versus Plasma: Implications for Clinical Utility. J Clin Lipidol 2013;7:433-440
118. Ammann EM, Pottala JV, Harris WS, Espeland MA, Wallace R, Denburg NL, Carnahan RM, Robinson JG. Omega-3 fatty acids and domain-specific cognitive aging: Secondary analyses of data from WHISCA. Neurology. 2013 Sep 25. [Epub ahead of print]
117. Grenon SM, Owens CD, Alley H, Chong K, Yen PK, Harris W, Hughes-Fulford M, Conte MS. n-3 Polyunsaturated fatty acids supplementation in peripheral artery disease: the OMEGA-PAD trial. Vasc Med. 2013 Sep 19. [Epub ahead of print]
116. Lee AL, Park Y. The association between n-3 polyunsaturated fatty acid levels in erythrocytes and the risk of rheumatoid arthritis in Korean women. Ann Nutr Metab 2013;63:88-95
115. Udani JK, Ritz BW. High potency fish oil supplement improves omega-3 fatty acid status in healthy adults: an open-label study using a web-based, virtual platform. Nutr J. 2013;12:112. [Epub ahead of print]
114. Lemke SL, Maki KC, Hughes G, Taylor ML, Krul ES, Goldstein DA, Su H, Rains TM, Mukherjea R. Consumption of stearidonic Acid-rich oil in foods increases red blood cell eicosapentaenoic Acid. J Acad Nutr Diet. 2013;113:1044-56
113. Kim TH, Jo S, Park Y, Lee HH, Chung SH, Lee WS. Differences in omega-3 and fatty acid profiles between patients with endometriosis and those with a functional ovarian cyst. J Obstet Gynaecol. 2013;33:597-600
112. Park Y, Lee AR, Shim SC, Lee JH, Choe JY, Ahn H, Choi CB, Sung YK, Bae SC. Effect of n-3 polyunsaturated fatty acid supplementation in patients with rheumatoid arthritis: a 16-week randomized, double-blind, placebo-controlled, parallel-design multicenter study in Korea. J Nutr Biochem 2013; 24:1367–1372
111. Grenon SM, Conte MS, Nosova E, Alley H, Chong K, Harris WS, Vittinghoff E, Owens CD. Association between n-3 polyunsaturated fatty acid content of red blood cells and inflammatory biomarkers in patients with peripheral artery disease. J Vasc Surg. 2013;8:176-84 e-pub 2013 Jul 2.
110. Metkus T, Timpone J, Leaf D, Bidwell Goetz M, Harris W, Brown T. Omega-3 fatty acid therapy reduces triglycerides and interleukin-6 in hypertriglyeridemic HIV patients. HIV Med. 2013;14:530-9, e-pub 2013 May 19.
109. Schuchardt JP, Schmidt S, Kressel G, Dong H, Willenberg I, Hammock BD, Hahn A, Schebb NH. Comparison of free serum oxylipin concentrations in hyper- vs. normolipidemic men. Prostaglandins Leukot Essent Fatty Acids. 2013;89:19-29, e-pub 2013 May 19
108. Schuchardt JP, Hahn A. Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 2013;89:1-8 Epub 2013 May 12
107. Oelrich B, Dewell A, Gardner CD.. Effect of fish oil supplementation on serum triglycerides, LDL cholesterol and LDL subfractions in hypertriglyceridemic adults. Nutr Metab Cardiovasc Dis. 2013;23:350-7
106. Harris WS, Pottala JV, Varvel SA, Borowski JJ, Ward JN, McConnell JP. Erythrocyte omega-3 fatty acids increase and linoleic acid decreases with age: Observations from 160,000 patients. Prostaglandins Leukot Essent Fatty Acids. 2013;88:257-63 E-pub 2013 Jan 30
105. Oh JS, Kim SM, Sin YH, Kim JK, Park Y, Bae HR, Son YK, Nam HK, Kang HJ, An WS. Comparison of erythrocyte membrane Fatty Acid contents in renal transplant recipients and dialysis patients. Transplant Proc. 2012;44:2932-5. doi: e-pub 2012 Nov 6.
104. Harris WS. Are n-3 fatty acids still cardioprotective? Curr Opin Clin Nutr Metab Care. 2013;16:141-9 e-pub 2012 Nov 29
103. von Schacky C. Meta-Analysing randomised controlled trials with omega-3 fatty acids in cardiovascular disease. Evidence based medicine, ebmed-2012-100960, e-pub Nov 17
102. von Schacky C. Omega-3 Fettsäuren – HS-Omega-3 Index und Gesundheit von Herz und Hirn. Vitalstoffe 2012;2/4:28-36
101. Harris WS, Kennedy KF, O'Keefe JH Jr, Spertus JA. Red blood cell fatty acid levels improve GRACE score prediction of 2-yr mortality in patients with myocardial infarction. Int J Cardiol. 2012 Oct 5. pii: S0167-5273(12)01182-5. doi: 10.1016/j.ijcard.2012.09.076. [Epub ahead of print]
100. Schmidt S, Stahl F, Mutz KO, Scheper T, Hahn A, Schuchardt JP. Different gene expression profiles in normo- and dyslipidemic men after fish oil supplementation: results from a randomized controlled trial. Lipids Health Dis. 2012 Aug 29;11:105
99. von Schacky C. Die Bedeutung des Omega-3 Index für den Sportler. Vitalstoffe 2012;2/2:47-51
98. An WS, Lee SM, Son YK, Kim SE, Kim KH, Han JY, Bae HR, Rha SH, Park Y. Omega-3 fatty acid supplementation increases 1,25-dihydroxyvitamin D and fetuin-A levels in dialysis patients. Nutr Res. 2012 Jul;32(7):495-502. Epub 2012 Jul 20
97. Skulas-Ray AC, Kris-Etherton PM, Harris WS, West SG. Effects of Marine-Derived Omega-3 Fatty Acids on Systemic Hemodynamics at Rest and During Stress: a Dose-Response Study. Ann Behav Med. 2012;44:301-8, e-pub 2012 Aug 4
96. Schmidt S, Stahl F, Mutz KO, Scheper T, Hahn A, Schuchardt JP. Transcriptome-based identification of antioxidative gene expression after fish oil supplementation in normo- and dyslipidemic men. Nutr Metab (Lond). 2012 May 23;9(1):45
95. Shearer GC, Pottala JV, Hansen SN, Brandenburg V, Harris WS. Effects of prescription niacin and omega-3 fatty acids on lipids and vascular function in metabolic syndrome: a randomized controlled trial. J Lipid Res. 2012;53:2429-35, 2012 Aug 14. [Epub ahead of print]
94. Pottala JV, Espeland MA, Polreis J, Robinson J, Harris WS. Correcting the Effects of -20 °C Storage and Aliquot Size on Erythrocyte Fatty Acid Content in the Women's Health Initiative. Lipids. 2012;47:835-46, e-pub 2012 Jul 11
93. Keenan AH, Pedersen TL, Fillaus K, Larson MK, Shearer GC, Newman JW. Basal omega-3 fatty acid status affects fatty acid and oxylipin responses to high-dose n3-HUFA in healthy volunteers. J Lipid Res. 2012;53:1662-9 e-pub 2012 May 24
92. Johnston DT, Deuster PA, Harris WS, Macrae H, Dretsch MN. Red blood cell omega-3 fatty acid levels and neurocognitive performance in deployed U.S. Servicemembers. Nutr Neurosci. 2013;16:30-8, e-pub 2012 Jun 28
91. Harris WS, Pottala JV, Lacey SM, Vasan RS, Larson MG, Robins SJ. Clinical correlates and heritability of erythrocyte eicosapentaenoic and docosahexaenoic acid content in the Framingham Heart Study. Atherosclerosis. 2012;225:425-31, 2012 Jun 7. [Epub ahead of print]
90. Voruganti VS, Higgins PB, Ebbesson SOE, Kennish J, Göring HHH, Haack K, Laston S, Drigalenko E, Wenger CR, Harris WS, Fabsitz RR, Devereux RB, MacCluer JW, Curran JE, Carless MA, Johnson MP, Moses EK, Blangero J, Umans JK, Howard BV, Cole SA, Comusszie AG. Variants in CPT1A, FADS1, and FADS2 are associated with higher levels of estimated plasma and erythrocyte delta-5 desatureases in Alaskan Eskimos. Front Genet 2012;3:86. Epub 2012 Jun 11.
89. Harris WS, Pottala JV, Vasan RS, Larson MG, Robins SJ. Changes in Erythrocyte Membrane Trans and Marine Fatty Acids between 1999 and 2006 in Older Americans. J Nutr. 2012;142:1297-303 e-pub 2012 May 23
88. Park Y, Kim M, Baek D, Kim SH. Erythrocyte n-3 polyunsaturated fatty acids and seafood intake decrease risk of depression: Case-control study in Korea. Ann Nutr Metab 2012;61:25-31
87. Block RC, Dier U, Calderonartero P, Shearer GC, Kakinami L, Larson MK, Harris WS, Georas S, Mousa SA. The Effects of EPA+DHA and Aspirin on Inflammatory Cytokines and Angiogenesis Factors. World J Cardiovasc Dis. 2012;2:14-19. e-pub 2011 Dec 30.
86. von Schacky C. Omega-3 fatty acids: anti-arrhythmic, pro-arrhythmic, or both? Frontiers in Cardiac Electrophysiology, 2012;3: 98
85. Moon HJ, Kim TH, Byun DW, Park Y. Positive correlation between erythrocyte levels of n-3 polyunsaturated fatty acids and bone mass in postmenopausal Korean women with osteoporosis. Ann Nutr Metab 2012;60:146-53
84. Kim YJ, Jeong DW, Lee JG, Lee HC, Lee SY, Kim YJ, Yi YH, Park YS, Cho YH, Bae MJ, Choi EJ. Omega-3 index and smoking in patients with acute ST-elevation myocardial infarction taking statins: a case-control study in Korea. Lipids Health Dis. 2012;11:43
83. Pottala JV, Churchill SW, Talley JA, Lynch DA, von Schacky C, Harris WS. Red Blood Cell Fatty Acids are Associated with Depression in a Case-Control Study of Adolescents. Prostaglandins Leukot Essent Fatty Acids 2012;86:161-5 e-pub 2012 Mar 28
82. Tan ZS, Harris WS, Beiser AS, Au R, Himali JJ, Debette S, Pikula A, DeCarli CS, Wolf PA, Vasan RS, Robins SJ, Seshardi S. Red Blood Cell Omega-3 Fatty Acid Levels and Markers of Accelerated Brain Aging. Neurology 2012;78:658-64
81. Billman GE, Carnes CA, Adamson PB, Vanoli E, Schwartz PJ. Dietary Omega-3 Fatty Acids and Susceptibility to Ventricular Fibrillation: Lack of Protection and A Proarrhythmic Effect. Circ Arrhythm Electrophysiol. 2012;5:553-60, e-pub 2012 Feb 14.
80. Hussey EK, Portelli S, Fossler MJ, Gao F, Harris WS, Blum RA, Lates CD, Gould E, Abu-Baker O, Johnson S, Reddy KK. Relative bioavailability of an Emulsion Formulation for Omega-3-Acid Ethyl Esters Compared to theCommercially Available Formulation : A Randomized, Parallel-Group, Single-Dose Study Followed by Repeat dosing in healthy volunteers. Clin Pharm Drug Develop 2012;1:14-23
79. Billman GE, Harris WS, Carnes CA, Adamson PB, Vanoli E, Schwartz PJ.Dietary Omega-3 Fatty Acids and Susceptibility to VentricularFibrillation: Lack of Protection and A Proarrhythmic Effect. Circ ArrhythmElectrophysiol. 2012 Feb 14. [Epub ahead of print]
78. An WS, Lee SM, Son YK, Kim SE, Kim KH, Han JY, Bae HR, Park Y. Effectof omega-3 fatty acids on the modification of erythrocyte membrane fattyacid content including oleic acid in peritoneal dialysis patients.Prostaglandins Leukot Essent Fatty Acids. 2012;86:29-34, e-pub 2011 Nov 7
77. Krul ES, Lemke SL, Mukherjea R, Taylor ML, Goldstein DA, Su H, Liu P,Lawless A, Harris WS, Maki KC. Effects of duration of treatment and dosageof eicosapentaenoic acid and stearidonic acid on red blood celleicosapentaenoic acid content. Prostaglandins Leukot Essent Fatty Acids2012;86:51-9, e-pub 2011 Nov 5
76. Shearer GC, Savinova OV, Harris WS. Fish oil: How does it reduceplasma triglycerides? Biochim Biophys Acta 2011; e-pub BBAMCB-57199
75. Harris WS. Stearidonic Acid as a 'Pro-Eicosapentaenoic Acid'. CurrOpin Lipidol 2012;23:30-4, e-pub 2011 Dec 20
74. Harris WS. Stearidonic Acid-Enhanced Soybean Oil: A Plant-Based Sourceof (n-3) Fatty Acids for Foods. J Nutr 2012;142:600S-4S. e-pub 2012 Jan 25
73. Dewell A, Marvasti FF, Harris WS, Tsao P, Gardner CD. Dose-DependentEffects of Plant and Marine Omega-3 Fatty Acids on Inflammatory Markers inInsulin Resistant Adults. A Randomized Controlled Trial. J Nutrition2011;141:2166-71, e-pub 2011 Oct 26
72. Salisbury AC, Harris WS, Amin AP, Reid KJ, O'Keefe Jr JH, Spertus JA.Relation Between Red Blood Cell Omega-3 Fatty Acid Index and BleedingDuring Acute Myocardial Infarction. Am J Cardiol. 2012;109:13-8, e-pub2011 Sep 23
71. Ladesich JB, Pottala JV, Romaker A, Harris WS. Membrane levels of omega-3 docosahexaenoic acid is associated with obstructive sleep apnea. J Clin Sleep Med 2011;7:391-6
70. Schuchardt JP, Neubronner J, Kressel G, Merkel A, von Schacky C, Hahn A. Moderate doses of EPA and DHA from re-esterified triacylglycerols but not from ethyl-esters lower fasting serum triacylglycerols in statin-treated dyslipidemic subjects: Results from a six month randomized controlled trial.Prostaglandins Leukot Essent Fatty Acids, 2011, e-pub
69. Park Y, Moon HM, Kim SH. N-3 polyunsaturated fatty acid consumption produces neurobiological effects associated with prevention of depression in rats after the forced swimming test. J Nutr Biochem 2011 (in press)
68. von Schacky C. The Omega-3 Index as a Risk Factor for Cardiovascular Diseases. Prostaglandins and Other Lipid Mediators. doi:10.1016/j.prostaglandins.2011.06.008
67. Park Y, Kim M. Serum 25-hydroxyvitamin D concentrations are associated with erythrocyte levels of n-3 PUFA but not risk of CVD. Br J Nutr. 2011 Jun 1:1-6. [Epub ahead of print]
66. Son YK, Lee SM, Kim SE, Kim KH, Lee SY, Bae HR, Han JY, Park Y, An WS. Association Between Vascular Calcification Scores on Plain Radiographs and Fatty Acid Contents of Erythrocyte Membrane in Hemodialysis Patients. J Ren Nutr. 2011 May 25. [Epub ahead of print]
65. Salisbury AC, Amin AP, Harris WS, Chan PS, Gosch KL, Rich MW, O'Keefe JH Jr, Spertus JA. Predictors of omega-3 index in patients with acute myocardial infarction. Mayo Clin Proc. 2011;86:626-32
64. An WS, Son YK, Kim SE, Kim KH, Bae HR, Lee S, Park Y, Kim HJ, Vaziri ND. Association of adiponectin and leptin with serum lipids and erythrocyte omega-3 and omega-6 fatty acids in dialysis patients. Clin Nephrol. 2011 Mar;75(3):195-203.
63. Billman GE, Harris WS. Effect of Dietary Omega-3 Fatty Acids on the Heart Rate and the Heart Rate Variability Response to Myocardial Ischemia or Submaximal Exercise. Am J Physiol Heart Circ Physiol. 2011 Apr 1. [Epub ahead of print]
62. Sala-Vila A, Harris WS, Cofán M, Pérez-Heras AM, Pintó X, Lamuela-Raventós RM, Covas MI, Estruch R, Ros E. Determinants of the omega-3 index in a Mediterranean population at increased risk for CHD. Br J Nutr. 2011 Mar 30:1-7. (Epub ahead of print)
61. Harris WS, Klurfeld DM. Twentieth-century trends in essential fatty acid intakes and the predicted omega-3 index: evidence versus estimates. Am J Clin Nutr. 2011 Mar 23. [Epub ahead of print]
60. Moyers B, Farzaneh-Far R, Harris WS, Garg S, Na B, Whooley MA. Relation of Whole Blood n-3 Fatty Acid Levels to Exercise Parameters in Patients With Stable Coronary Artery Disease (from the Heart and Soul Study). Am J Cardiol. 2011 Feb 7, 2011;107:1149-54.
59. Aarsetøy H, Aarsetøy R, Lindner T, Staines H, Harris WS, Nilsen DWT. Low Levels of the Omega-3 Index are Associated with Sudden Cardiac Arrest and Remain Stable in Survivors in the Subacute Phase. Lipids 2011. 2011;46:151-61.
58. Chen J, et al. Omega-3 fatty acids prevent pressure overload-induced cardiac fibrosis through activation of cGMP/PKG signaling in cardiac fibroblasts. Circulation 2010. 2011;123:584-93.
57. Baghai TC, et al. Major depression is associated with cardiovascular risk factors and low Omega-3 Index. J Clin Psychiat 2010, Dec, e-pub.
56. Kim M, Nam JH, Oh, DH Park Y. Erythrocyte α-linolenic acid is decreased the risk for mild dementia in Korean elderly. Nutr Res 2010, 30, 756-61
55. Park Y et al. Association between 24-hour ambulatory blood pressure and erythrocyte n-3 polyunsaturated fatty acids in Korean subjects with hypertension. Nutr Res 2010, 30:807-814
54. Yang R, et al. Pre-feeding with omega-3 fatty acids suppresses inflammation following hemorrhagic shock. J Parenter Enteral Nutr. 2010;34:496-502.
53. Skulas-Ray AC, et al. Dose response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy people with moderate hypertriglyceridemia. Am J Clin Nutr 2010. 2011;93:243-5.
52. Neubronner J, et al. Enhanced increase of omega-3 index in response to long-term n-3 fatty acid supplementation from triacylglycerides versus ethyl esters. Eur J Clin Nutr. 2010 Nov 10. 2011;65:247-54.
51. von Schacky C. Schwangerschaft, kindliche Entwicklung, Omega-3-Fettsäuren und HS-Omega-3 Index. J Frauengesundheit 2010;3:10-21.
50. Harris WS. The Omega-3 Index: Clinical Utility for Therapeutic Intervention. Curr Cardiol Rep 2010;12:503-8.
49. Lemke SL, et al. Dietary intake of stearidonic acid-enriched soybean oil increases the omega-3 index: randomized, double-blind clinical study of efficacy and safety. Am J Clin Nutr. 2010; 92:766-75.
48. Carney RM, et al. Effect of Omega-3 Fatty Acids on Heart Rate Variability in Depressed Patients with Coronary Heart Disease. Psychosom Med 2010;72(8):748-54.
47. Arnold C, et al. Arachidonic acid-metabolizing cytochrome P-450 enzymes are targets of omega-3 fatty acids. J Biol Chem, 2010;e-pub 23.08.10, M110.118406.
46. von Schacky C. Omega-3 Index and cardiovascular disease prevention: principle and rationale. Lipid Technology 2010;22:151-4.
45. Pottala JV, et al. Blood Eicosapentaenoic and Docosahexaenoic Acids Predict All-Cause Mortality in Patients With Stable Coronary Heart Disease: The Heart and Soul Study. Circ Cardiovasc Qual Outcomes. 2010;3:406-12.
44. Ebbesson SO et al. Heart rate is associated with red blood cell fatty acid concentration: the Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) study.Am Heart J. 2010;Jun;159(6):1020-5.
43. Billman GE et al. Effects of dietary omega-3 fatty acids on ventricular function in dogs with healed myocardial infarctions: in vivo and in vitro studies. Am J Physiol Heart Circ Physiol. 2010 Apr;298(4):H1219-28.
42. Köhler A, et al. Effects of a convenience drink fortified with n-3 fatty acids on the n-3 index. Br J Nutr 2010; 104:729-36.
41. von Schacky C. Omega-3 Index and Sudden Cardiac Death. Nutritives 2010;2:375-8.
40. Roth EM, Harris WS. Fish oil for primary and secondary prevention of coronary heart disease. Curr Atheroscler Rep. 2010;12:66-72.
39. von Schacky C. Omega-3 fatty acids vs. cardiac disease: the contribution of the omega-3 index. Cell Mol Biol 2010;56:90-98.
38. Farzneh-Far R, et al, Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease JAMA 2010;303:250-257.
37. Shearer GC, et al. Myocardial infarction does not affect fatty acid profiles in rats. Prostaglandins Leukot Essent Fatty Acids 2009; 81:411-416.
36. Carney RM, et al. Omega-3 Augmentation of Sertaline in Treatment of Depression in Patients with Coronary Heart Disease JAMA 2009;302:1651-35.
35. Park Y, et al. Correlation of erythrocyte fatty acid composition and dietary intakes with markers of atherosclerosis in patients with myocardial infarction. Nutr Res. 2009;29:391-6.
34. Harris WS. The Omega-3 Index: From Biomarker to Risk Marker to Risk Factor. Curr Athero Rep 2009;11:411-417.
33. An WS, et al. Comparison of fatty acid contents of erythrocyte membrane in hemodialysis and peritoneal dialysis patients. J Ren Nutr. 2009;19:267-74.
32. Harris WS, Thomas RM. Biological variability of blood omega-3 biomarkers. Clin Biochem 2009;Sep, e-pub, 2010 Feb;43(3):338-40.
31. Park Y, et al. Low level of n-3 polyunsaturated fatty acids in erythrocytes is a risk factor for both acute ischemic and hemorrhagic stroke in Koreans. Nutr Res. 2009;29:825-30.
30. von Schacky C. Cardiovascular disease prevention and treatment. Prostaglandins Leukot Essent Fatty Acids 2009;81:193-8.
29. Park Y, et al. Erythrocyte fatty acid profiles can predict acute non-fatal myocardial infarction. Br J Nutr. 2009;102:1355-6.
28. Aarsetoey H, et al. (n-3) fatty acid content of red blood cells does not predict risk of future cardiovascular events following an acute coronary syndrome. J Nutr 2009;139:1-7.
27. Shearer GC, et al Red Blood Cell Fatty Acid Patterns and Acute Coronary Syndrome. PLoS ONE 2009;4: e5444. doi:10.1371/journal.pone.0005444.
26. Ali S, et al. Association between omega-3 fatty acids and depressive symptoms among patients with established coronary artery disease: Data from the Heart and Soul Study. Psychother Psychosom. 2009;78:125-127.
25. Duda MK et al Fish oil but not flaxseed oil decreases inflammation and prevents pressure-overload induced cardiac dysfunction. Cardiovasc Res 2009;81:319-327.
24. von Schacky C. Use of red cell fatty acid profiles as biomarkers in cardiac disease Biomark Med 2009;3:25-32.
23. Harris WS, et al. Stearidonic Acid-Enriched Soybean Oil Increased the Omega-3 Index, an Emerging Cardiovascular Risk Marker. Lipids 2008;43:805-811.
22. Larson MK, et al. Effects of Omega-3 Acid Ethyl Esters and Aspirin, Alone and in Combination, on Platelet Function in Healthy Subjects. J Thromb Haemost 2008;100:634-41.
21. Farzaneh-Far R, et al. Inverse association of erythrocyte n-3 fatty acid levels with inflammatory biomarkers in stable coronary artery disease: The Heart and Soul Study. Atherosclerosis 2009;205:538.
20. Cohen BE, et al. Red blood cell EPA and DHA concentrations are positively associated with Socioeconomic status in patients with established coronary artery disease: Data from the Heart and Soul Study. J Nutrition 2008;138:1135-1140.
19. Block RC, et al. Determinants of blood cell omega-3 fatty acid content. The Open Biomarkers J 2008;1:1-6.
18. Block RC, et al. Omega-6 and trans fatty acids in blood cell membranes: a risk factor for acute coronary syndromes? Am Heart J. 2008;156:1117-1123.
17. Block RC, et al. EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls. Atherosclerosis 2008;197:821-828.
16. Amin AA, et al. Acute Coronary Syndrome Patients With Depression Have Low Blood Cell Membrane Omega-3 Fatty Acid Levels. Psychosom Med 2008;70:856-62.
15. von Schacky C. Omega-3 fatty acids pro-arrhythmic, anti-arrhythmic or both ? Curr Op Nutr Metab Care 2008;11:94-99.
14. Lee E, et al. n-3 Polyunsaturated fatty acids and trans fatty acids in patients with the metabolic syndrome: a case-control study in Korea. Br J Nutr 2008;100:609-14.
13. Harris WS, von Schacky C. N-3 Fatty Acids, Acute Coronary Syndrome, and Sudden Death. Curr Cardiovasc Risk Rpt 2008;2:161-166.
12. Hwang I, Cha A, Lee H, Yoon H, Yoon T, Cho B, Lee S, Park Y. n-3 Polyunsaturated Fatty Acids and Atopy in Korean Preschoolers. Lipid 2007, 42(4), 345-349
11. Aarsetoey H, et al. Low levels of cellular omega-3 increases the risk of ventricular fibrillation during the acute ischaemic phase of a myocardial infarction. Resuscitation 2008;78:258-264.
10. Harris WS, et al. Comparison of the effects of fish and fish oil capsules on the n-3 fatty acid content of blood cells and plasma phospholipids. Am J Clin Nutr 2007;86:1621-25.
9. Harris WS, et al. Blood Omega-3 and Trans Fatty Acids in Middle-Aged Acute Coronary Syndrome Patients. Am J Cardiol 2007;99:154-158.
8. von Schacky C, Harris WS. Cardiovascular Risk and the Omega-3 Index. J Cardiovasc Med 2007;8 (suppl 1):S46-49.
7. Harris WS, et al. Stearidonic Acid Supplementation Increases Red Blood Cell and Heart Omega 3 Index in Dogs. Lipids 42:325-333, 2007.
6. Harris WS. Omega-3 Fatty Acids and Cardiovascular Disease. A case for the Omega-3 Index as a New Risk Factor. Pharmacol Res 2007;55:217-23
5. von Schacky C. Omega-3 Fettsäuren in der Kardiologie – neueste Entwicklungen. Münch Med Wochenschr 2007;149:97-101.
4. Harris WS, et al. Effects of Omega-3 Fatty Acids on Heart Rate in Cardiac Transplant Recipients. Am J Cardiol 2006;98:1393-1395.
3. Sands SA, et al. The impact of age, body mass index, and fish intake on the EPA and DHA content of human erythrocytes. Lipids 2005;40:343-347.
2. Harris WS, et al. Omega-3 Fatty Acid Levels in Transplanted Human Hearts: Effect of Supplementation and Comparison with Erythrocytes. Circulation 2004;110;1645-1649.
1. Harris WS and von Schacky C. The Omega-3 Index: A New Risk Factor for Death from CHD? Preventive Medicine 2004;39:212-220.


Publikationen


Association of Marine Omega-3 Fatty Acid Levels With Telomeric Aging in Patients With Coronary Heart Disease

Autoren: Ramin Farzaneh-Far, MD; Jue Lin, PhD; Elissa S. Epel, PhD; William S. Harris, PhD; Elizabeth H. Blackburn, PhD; Mary A. Whooley, MD
Place: JAMA. 2010;303(3):250-257.
ABSTRACT:
Objective: Prospective cohort study of 608 ambulatory outpatients in California with stable coronary artery disease recruited from the Heart and Soul Study between September 2000 and December 2002 and followed up to January 2009 (median, 6.0 years; range, 5.0-8.1 years).
Design, Setting, and Participants: We measured the content of EPA+DHA in 768 ACS patients and 768 age-, sex- and race-matched controls. The association with ACS case status of blood cell EPA+DHA [both by a 1 unit change and by category (low, <4%; intermediate 4.1-7.9%; and high, > or =8%)] was assessed using multivariate conditional logistic regression models adjusting for matching variables and smoking status, alcohol use, diabetes, body mass index, serum lipids, education, family history of coronary artery disease, personal histories of myocardial infarction and hypertension, and statin, aspirin, and other antiplatelet drug use.
Main Outcome Measures: We measured leukocyte telomere length at baseline and again after 5 years of follow-up. Multivariable linear and logistic regression models were used to investigate the association of baseline levels of omega-3 fatty acids (docosahexaenoic acid [DHA] and eicosapentaenoic acid [EPA]) with subsequent change in telomere length.
Results: Individuals in the lowest quartile of DHA+EPA experienced the fastest rate of telomere shortening (0.13 telomere-to-single-copy gene ratio [T/S] units over 5 years; 95% confidence interval [CI], 0.09-0.17), whereas those in the highest quartile experienced the slowest rate of telomere shortening (0.05 T/S units over 5 years; 95% CI, 0.02-0.08; P < .001 for linear trend across quartiles). Levels of DHA+EPA were associated with less telomere shortening before (unadjusted β coefficient x 10–3 = 0.06; 95% CI, 0.02-0.10) and after (adjusted β coefficient x 10–3 = 0.05; 95% CI, 0.01-0.08) sequential adjustment for established risk factors and potential confounders. Each 1-SD increase in DHA+EPA levels was associated with a 32% reduction in the odds of telomere shortening (adjusted odds ratio, 0.68; 95% CI, 0.47-0.98).
Conclusion: Among this cohort of patients with coronary artery disease, there was an inverse relationship between baseline blood levels of marine omega-3 fatty acids and the rate of telomere shortening over 5 years.
Author Affiliations: Division of Cardiology, San Francisco General Hospital (Dr Farzaneh-Far), Departments of Medicine (Drs Farzaneh-Far and Whooley), Biochemistry and Biophysics (Drs Lin and Blackburn), Psychiatry (Dr Epel), and Epidemiology and Biostatistics (Dr Whooley), University of California, San Francisco, and Veterans Affairs Medical Center (Dr Whooley), San Francisco; and Sanford Research/USD and Sanford School of Medicine, University of South Dakota, Sioux Falls (Dr Harris).
Link: http://jama.ama-assn.org/cgi/content/short/303/3/250?home


Use of red blood cell fatty-acid profiles as biomarkers in cardiac disease

Autoren: Prof. Dr. med. Clemens von Schacky
ABSTRACT:
The Omega‐3 Index is defined as the percentage of eicosapentaenoic acid plus docosahexaenoic acid in red blood cell fatty acids, assessed by a standardized methodology. Better than fatty-acid compositions in other compartments, the Omega‐3 Index represents a person’s status in eicosapentaenoic acid plus docosahexaenoic acid. An Omega‐3 Index less than 4% is associated with a tenfold risk for sudden cardiac death in comparison to an Omega‐3 Index greater than 8%. Mechanisms of action are plausible and large-scale intervention studies in humans support causality. A low Omega‐3 Index may also be a risk factor for coronary artery disease and for complications of congestive heart failure. Ongoing research will define the value of the Omega‐3 Index as a risk factor and treatment parameter more precisely.
Keywords: congestive heart failure, coronary artery disease, docosahexaenoic acid, eicosapentaenoic acid, Omega‐3 Index, sudden cardiac death
Link: PDF

EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls. Atherosclerosis. 2008;197:821-8

Autoren: Block RC, Harris WS, Reid KJ, Sands SA and Spertus JA
Place: Department of Community and Preventive Medicine, University of Rochester School of Medicine and Dentistry, Rochester, Box 644, 601 Elmwood Avenue, NY 14642, United States. robert block@urmc.rochester.edu
ABSTRACT:
Background: Increased blood levels of the omega-3 fatty acids (FA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been inversely associated with risk for sudden cardiac death, but their relationship with acute coronary syndromes (ACS) is unclear. OBJECTIVE: We hypothesized that the EPA+DHA content of blood cell membranes, as a percent of total FAs, is reduced in ACS patients relative to matched controls.
METHODS: We measured the content of EPA+DHA in 768 ACS patients and 768 age-, sex- and race-matched controls. The association with ACS case status of blood cell EPA+DHA [both by a 1 unit change and by category (low, <4%; intermediate 4.1-7.9%; and high, > or =8%)] was assessed using multivariate conditional logistic regression models adjusting for matching variables and smoking status, alcohol use, diabetes, body mass index, serum lipids, education, family history of coronary artery disease, personal histories of myocardial infarction and hypertension, and statin, aspirin, and other antiplatelet drug use.
RESULTS: The combined groups had a mean age of 61+/-12 years, 66% were male, and 92% were Caucasian. The EPA+DHA content was 20% lower in cases than controls (3.4+/-1.6 vs. 4.25+/-2.0%, p<0.001). The multivariable-adjusted odds for case status was 0.77 (95% CI 0.70 to 0.85, p<0.001) for a 1 unit increase in EPA+DHA content. Compared with the lowest EPA+DHA group, the odds ratio for an ACS event was 0.58 (95% CI 0.42-0.80), in the intermediate EPA+DHA group and was 0.31 (95% CI 0.14-0.67; p for trend <0.0001) in the highest EPA+DHA group.
CONCLUSIONS: Odds for ACS case status increased incrementally as the EPA+DHA content decreased suggesting that low EPA+DHA may be associated with increased risk for ACS.
Link: http://linkinghub.elsevier.com/retrieve/pii/S0021-9150(07)00476-5

Omega-3-Fettsäuren in der Kardiologie - Neueste Entwicklungen

Autoren:Prof. Dr. med. Clemens von Schacky, Medizinische Klinik und Poliklinik der Ludwig-Maximilians-Universität München und Omegametrix, Martinsried
ZUSAMMENFASSUNG
Die wesentlichen kardiologischen Fachgesellschaften auf der Welt empfehlen die beiden Omega-3 Fettsäuren Eicosapentaensäure (EPA) und Docosahexaensäure (DHA) zur Nachbehandlung nach Myokardinfarkt, zur Prävention des plötzlichen Herztodes und zur Prävention kardiovaskulärer Ereignisse. Die Empfehlungen beruhen auf einer umfassenden Datenlage, die in systematischen Reviews und Metaanalysen aufgearbeitet wurden. In epidemiologischen Arbeiten korrelierte der Gehalt eines Menschen an diesen beiden Omega-3 Fettsäuren invers mit der Wahrscheinlichkeit, den plötzlichen Herztod zu erleiden. Dieser Gehalt wird am besten durch den Omega-3 Index ausgedrückt, der den Gehalt der Erythrozyten an EPA und DHA erfasst. Der Omega-3 Index stellt sich so als Risikofaktor für den plötzlichen Herztod dar. Dies wird durch statistische Daten zum plötzlichen Herztod und durch die Ergebnisse von Interventionsstudien mit Omega-3-Fettsäuren gestützt. Der Omega-3 Index kann durch Aufnahme von Omega-3 Fettsäuren in einen Bereich steigen (> 8%), der den plötzlichen Herztod um 90% unwahrscheinlicher macht als der bei uns gängige Bereich (< 4%). Methodische Aspekte und analytische Probleme legen es nahe, den Omega-3 Index in einem hierfür ausgewiesenen Labor zu bestimmen.
Schlüsselwörter:Myokardinfarkt, Omega-3 Fettsäuren, Plötzlicher Herztod, Prävention, Omega-3 Index
MMW-Fortschritte der Medizin Originalien Nr. III/2007 (149. Jg.), S. 97-101
Fazit: Die beiden Omega-3-Fettsäuren EPA+DHA sind sicher und effektiv in der Prophylaxe des plötzlichen Herztodes, in der Nachbehandlung nach Myokardinfarkt oder in der kardiovaskulären Prävention. Die Gesamtmortalität wird um 17% gesenkt, was den Effekt der Statine übersteigt [13, 14]. Dies gilt insbesondere für die Verwendung von Quellen der Omega-3 Fettsäuren, die frei von Kontaminanten sind, wie hochwertige Fischöle. Der Omega-3 Index stellt sich als Risikofaktor für den plötzlichen Herztod dar und scheint bisher bekannten Risikofaktoren überlegen. Eine Therapie mit Omega-3-Fettsäuren kann mit dem Omega-3-Index kontrolliert und gesteuert werden.
PDF:Omega-3-Fettsäuren in der Kardiologie - Neueste Entwicklungen

Omega-3 Fatty Acids and Cardiac Arrhythmias: Prior Studies and Recommendations for Future Research: A Report from the National Heart, Lung, and Blood Institute and Office of Dietary Supplements Omega-3 Fatty Acids and Their Role in Cardiac Arrhythmogenesis Workshop

Autoren:Barry London, Christine Albert, Mark E. Anderson, Wayne R. Giles, David R. Van Wagoner, Ethan Balk, George E. Billman, Mei Chung, William Lands, Alexander Leaf, John McAnulty, Jeffrey R. Martens, Rebecca B. Costello and David A. Lathrop
Excerpt:Future randomized trials should feature the following: Patient selection and follow-up should include clinically relevant biological parameters and markers (eg, plasma and cellular n-3 fatty acid levels and markers of systemic inflammation, redox state, or oxidative stress).
Circulation 2007;116;e320-e335 DOI: 10.1161/CIRCULATIONAHA.107.712984
Circulation is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 72514
Copyright:Copyright © 2007 American Heart Association. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524-4539
The online version of this article, along with updated information and services, is located on the World Wide Web at: http://circ.ahajournals.org/cgi/content/full/116/10/e320

Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women.

Autoren: Qi Sun, Jing Ma, Hannia Campos, Susan E Hankinson, and Frank B Hu
ABSTRACT:
Background: Erythrocyte fatty acids may be superior to plasma fatty acids for reflecting long-term fatty acid intake because of less sensitivity to recent intake and a slower turnover rate.
Objective: The objective was to compare the fatty acid content of erythrocytes with that of plasma with respect to their abilities to reflect usual fatty acid intake.
Design: Fatty acids in plasma and erythrocytes were measured by capillary gas-liquid chromatography in 306 US women aged 43-69y. Fatty acid intake was assessed with a food-frequency question- naire, which was validated for measuring intakes of various fatty acids.
Results: Docosahexaenoic acid (DHA, 22:6n 3) in erythrocytes and plasma provided the strongest correlations with its intake, but erythrocyte DHA concentrations [Spearman's partial correlation co- efficient (rs) 0.56] were better than plasma DHA concentrations (rs 0.48) as a biomarker. Total trans fatty acids (rs 0.43) and total 18:1 trans isomers (rs 0.42) in erythrocytes were also more strongly correlated with intake than were those in plasma (rs 0.30 and rs 0.29, respectively). Moderate correlations were observed for linoleic acid (18:2n 6; erythrocytes, rs 0.24; plasma, rs 0.25), -linolenic acid (18:3n 3; erythrocytes, rs 0.18; plasma, rs 0.23), and eicosapentaenoic acid (20:5n 3; erythrocytes, rs 0.38; plasma, rs 0.21). For polyunsaturated and trans fatty acids, correlations between intakes and biomarkers improved moderately when average intakes over previous years were used.
Conclusion: Erythrocyte n 3 fatty acids of marine origin and trans fatty acid content are suitable biomarkers for long-term intake.
Am J Clin Nutr 2007;86:74-81.
Keywords:Fatty acids, erythrocytes, plasma, biological markers, food-frequency questionnaires, US women
The online version of this article, along with updated information and services, is located on the World Wide Web at: http://www.ajcn.org/cgi/content/abstract/86/1/74